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 25 

Abstract 26 

Background: Data suggest that metabolic health status, incorporating components of 27 

metabolic syndrome (MetS), predicts cardiovascular disease (CVD) risk better than body mass 28 

index (BMI). This study explored the association of MetS and obesity with endothelial 29 

function, a prognostic risk factor for incident CVD. 30 

Methods: Forty-four participants were phenotyped according to BMI as non-obese vs. obese 31 

(<30 or >30 kg/m2) and according to the International Diabetes Federation criteria of MetS: ≤2 32 

criteria MetS (MetS-) vs. ≥3 criteria MetS (MetS+); i) non-obese MetS- vs. ii) non-obese MetS+ 33 

and iii) obese MetS- vs. iv) obese MetS+. Flow-mediated dilation (FMD), body composition 34 

including liver fat (magnetic resonance imaging and spectroscopy), dietary intake, intensities 35 

of habitual physical activity and cardio-respiratory fitness, were determined. Variables were 36 

analysed using a one-factor between-groups analysis of variance (ANOVA) and linear 37 

regression; mean (95% CI) are presented.  38 

Results: Individuals with MetS+ displayed lower FMD than those with MetS-. For non-obese 39 

individuals mean difference between MetS+ and MetS- was 4.1% [(1.0, 7.3); P=0.004] and 40 

obese individuals had a mean difference between MetS+ and MetS- of 6.2% [(3.1, 9.2); 41 

P<0.001]. Although there was no association between BMI and FMD (P=0.27), an increased 42 

number of MetS components was associated with a lower FMD (P=0.005), and after 43 

adjustment for age and sex, 19.7% of the variance of FMD was explained by MetS whereas 44 

only 1.1% was explained by BMI.  45 

Conclusions: In this study cohort, components of MetS, rather than obesity per se, contribute 46 

to reduced FMD, which suggests a reduced bioavailability of nitric oxide and thus increased 47 

risk of CVD. 48 
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Introduction  49 

Obesity is strongly linked with an adverse cardio-metabolic profile and a number of chronic 50 

diseases including type 2 diabetes (T2D) and cardiovascular disease (CVD) (1, 2). Body mass 51 

index (BMI) is widely used clinically to determine the risk of complications relating to an 52 

excess accumulation of fat: the higher an individual’s BMI, the greater their risk of obesity-53 

related complications (3). In contrast, some data suggest that adults with a higher BMI can have 54 

a reduced mortality risk compared to non-obese counterparts, an puzzling finding known as the 55 

‘obesity paradox’, shown in T2D (4) and CVD (5). Metabolic syndrome (MetS) is defined as 56 

a cluster of risk factors including abdominal obesity, hypertension, dyslipidemia and insulin 57 

resistance. The International Diabetes Federation (IDF) report the role of MetS in the CVD 58 

epidemic, and highlight the importance of understanding the further role of vascular regulation 59 

and body fat distribution (6). 60 

While obesity also has mechanical and psychological implications, there is a growing 61 

recognition that not all obese individuals are ‘unhealthy’, and not all non-obese individuals are 62 

‘healthy’, with respect to their metabolic profiles. Some data suggest there is a lower T2D/CVD 63 

risk in overweight/obese people when there is an absence of Mets components but that there is 64 

a higher T2D/CVD risk in normal weight people in the presence of one/more MetS components 65 

(7). This has led to the identification of sub-phenotypes within BMI (i.e. metabolically healthy 66 

vs. unhealthy obesity and healthy vs. unhealthy normal weight), categories determined by the 67 

presence/absence of components of the MetS. There is currently no consensus on a precise 68 

definition for these terms/BMI sub-phenotypes, researchers questioning the degree of 69 

cardiovascular protection conferred by being metabolically healthy and many suggesting that 70 

metabolically healthy obesity represents a ‘transient metabolic state’ in a progressive and 71 

inevitable journey towards T2D and CVD (8-11). 72 
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When considering cardiovascular risk in these metabolically phenotyped groups, previous 73 

research has largely focused on the overall incidence of CVD (8, 9, 12-14). While this is 74 

important, endothelial function, an early, prognostic and reversible marker of CVD, is much 75 

less explored. The endothelium plays a pivotal role in vascular homeostasis (15), and brachial 76 

artery flow-mediated dilation (FMD) is predictive of future CVD risk (16). Endothelial 77 

dysfunction, characterised by decreased nitric oxide (NO) bioavailability, resulting in vascular 78 

inflammation, vasoconstriction, and thrombosis (17, 18), has been mechanistically related to 79 

the greater risk of cardiovascular events in people with obesity (19, 20). To put this 80 

measurement into a pathophysiological perspective, a meta-analysis reports that a 1% increase 81 

in FMD is associated with a pooled relative risk reduction in CVD of 0.87 (95% CI, 0.83- 0.91) 82 

(21). Furthermore, there is evidence that FMD has independent prognostic value to predict 83 

cardiovascular events that may better that of traditional risk factors (16). Evidence is lacking 84 

on how MetS alone, or in combination with obesity, affects FMD.  85 

The aim of this cross-sectional study was to explore the impact of obesity and MetS on 86 

endothelial function using measurements of FMD. Careful phenotypic characterisation of 87 

participants was undertaken incorporating assessments of lifestyle (including dietary records 88 

and physical activity by objective monitoring), measurements of cardio-respiratory fitness 89 

(CRF; by V̇O2), obesity and body composition (liver fat determined by MR scanning) and of 90 

cardio-metabolic health (including assessment of MetS using International Diabetes Federation 91 

criteria). 92 

Materials and Methods 93 

Participants  94 

Forty-four individuals (30 male, 14 female) with a mean age of 46±11 years were recruited via 95 

local advertisement across hospital departments and university campuses. Exclusions included 96 
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cardiovascular, respiratory, kidney, liver and/or endocrine complications, smoking and >14 97 

units/week of alcohol consumption; all participants were medication free. The study conformed 98 

to the Declaration of Helsinki and was approved by the North West Research Ethics Committee 99 

(14/NW/1145; 14/NW/1147; 15/NW/0550). All participants were informed of the protocol 100 

verbally and in writing before providing written informed consent prior to any assessments. 101 

Study design  102 

All participants completed habitual monitoring of physical activity (PA) and dietary 103 

consumption over a period of 4 days (including one weekend day), followed by two assessment 104 

visits. The first assessment visit, at Aintree University Hospital, comprised anthropometry, 105 

fasting biochemistry, and cardio-respiratory fitness (V̇O2 peak). The second assessment at the 106 

University of Liverpool MRI Centre (LiMRiC) comprised flow mediated dilation (FMD) and 107 

proton magnetic resonance spectroscopy (1H-MRS). Prior to each study visit, participants were 108 

required to fast overnight for >8 hours, abstain from alcohol and caffeine for 24 hours and from 109 

exercise for 48 hours; up to 500ml of water was permitted in the morning of a visit.  110 

Brachial artery flow mediated dilation (FMD)  111 

Endothelial function was assessed by measuring FMD in response to a 5 min ischaemic 112 

stimulus, induced by forearm cuff inflation placed immediately distal to the olecranon process, 113 

as previously described (22). Briefly, baseline images were recorded for 1 min prior to forearm 114 

cuff inflation (∼220 mmHg) for 5 min. Artery diameter and blood flow velocity recordings 115 

resumed 30 s prior to cuff deflation and continued for 3 min thereafter. Peak brachial artery 116 

diameter and blood flow velocity, and the time taken to reach these peaks following cuff release 117 

were recorded. Post-test analysis of brachial artery diameter was undertaken using custom-118 

designed automated edge-detection and wall-tracking software.  119 
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Cardio-respiratory fitness  120 

V̇O2 peak was determined using the modified Bruce protocol on a treadmill (Model 77OCE, 121 

RAM Medisoft Group, Manchester, UK) with breath-by-breath monitoring and analysis of 122 

expiratory gases and ventilation (Love Medical Cardiopulmonary Diagnostics, Manchester, 123 

UK). The V̇O2 peak was determined by any of the following: respiratory exchange ratio >1.15, 124 

heart rate >90% predicted maximum, plateau in V̇O2, or exhaustion, data is presented relative 125 

to total body mass and lean mass determined by BIA. 126 

Biochemical measures  127 

Blood samples were collected and analysed using the Olympus AU2700 analyser (Beckman 128 

Coulter, High Wycombe, UK) with standard proprietary reagents as follows: glucose with 129 

hexokinase, total cholesterol and HDL-cholesterol with cholesterol esterase/oxidase and 130 

triglyceride with glycerol kinase. LDL-cholesterol was calculated according to the Friedewald 131 

formula. 132 

Anthropometric measures  133 

Height was measured while participants were standing upright, with their back and head 134 

straight so that their Frankfurt plane was horizontal, to the nearest 0.5 cm using a stadiometer 135 

(Model 220, Seca, Germany). Waist circumference measurements (at the umbilicus) and hip 136 

circumference measurements (at the greater trochanter) were taken in duplicate. After 5 137 

minutes rest, blood pressure was determined as an average of 3 measurements using an 138 

automated monitor (Dinamap, G & E Medical, USA). Bio-impedance (BIA; Tanita, BC 420, 139 

Dolby Medical Stirling, UK) was used in all participants to quantify body composition; those 140 

who were safe for MR scanning had the more detailed measures outlined below.  141 
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MR determination of adipose tissue and liver fat  142 

Magnetic resonance methods were performed using a 1.5 T Siemens Symphony MRI scanner 143 

(Siemens Medical Solutions, Erlangen, Germany) as previously described (23-25). Volumetric 144 

analysis of adipose tissue was used to quantify regional fat; proton magnetic resonance 145 

spectroscopy (1H-MRS) was used to determine intrahepatic cellular lipid (IHCL): ‘liver fat’ 146 

percentage relative to water.  147 

Habitual physical activity monitoring and dietary analysis 148 

Physical activity monitoring PA was monitored using a validated (26) SenseWear mini 149 

armband (BodyMedia Inc., Pittsburgh, PA, USA). Participants were requested to wear the 150 

armband at all possible times (except when bathing and swimming (27)), and wear time 151 

(recorded as ~98%) was monitored using SenseWear Professional software (version 8.0). Data 152 

collected from the armband included: daily average step count, total energy expenditure, active 153 

energy expenditure and time spent in different intensity levels of PA including: sleep, lying 154 

down, sedentary, light, moderate, vigorous and very vigorous (<1.5, >1.5-3, >3-6, >6-9, >9 155 

metabolic equivalents respectively). 156 

Dietary analysis Total energy consumption, carbohydrate, protein and fat content were 157 

determined from dietary records by a registered nutritionist (KLM) using Nutritics (Nutrition 158 

Analysis Software for Professionals; https://www.nutritics.com/p/home; accessed 159 

17/07/2017). 160 

Individual phenotyping  161 

Following physiological assessment, participants were phenotyped according to obesity status 162 

and presence or absence of MetS. Individuals were characterised into one of four groups based 163 

on BMI (non-obese <30 vs obese ≥30 kg/m2) and the presence or absence of MetS according 164 
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to IDF criteria (6); we refer to these groups as i) ‘non-obese MetS-’, ii) ‘non-obese MetS+’, iii) 165 

‘obese MetS-’ and iv) ‘obese MetS+.  166 

Sample size calculation  167 

The primary outcome variable was FMD. Based on previous data (22) and a two-sample t-test 168 

(post-hoc comparison) with a 0.05 two-sided significance level, a sample size of 10 per group 169 

would have 80% power to detect a difference in means of 3.5%, assuming a common standard 170 

deviation of 2.5% (G*Power 3.1.5 (28)). 171 

Statistical analysis 172 

All data were explored for normality by visual inspection. Comparisons of group demographics 173 

were explored using one factor between-groups analysis of variance (ANOVA) for continuous 174 

variables and chi-squared for categorical outcomes. The main outcome variables (e.g. FMD, 175 

cardio-respiratory fitness, and liver fat) were analysed using a one factor between-groups 176 

ANOVA, with Bonferroni correction for multiple comparisons. All FMD data were analysed, 177 

and are presented, as covariate-controlled for baseline artery diameter measured prior to the 178 

introduction of hyperaemia in each test; this approach is more accurate for scaling changes in 179 

artery diameter than simple percentage change (29, 30). Regression models, adjusted for age 180 

and sex, were fitted to categories of BMI and number of MetS components to explore the 181 

association with FMD.  Finally, we estimated the amount of variance explained in FMD by 182 

BMI and number of MetS components using an incremental sums of squares approach. 183 

Distribution data are presented as mean±SD and outcomes of ANOVA as mean (95% CI). The 184 

alpha level of statistical significance was set at P<0.05. Statistical analysis was performed using 185 

SPSS for Windows (Version 24.0, SPSS, Chicago, IL, USA). 186 
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Results 187 

Participant characteristics 188 

Gender, age and BMI for each of the groups are summarised in Table 1. The differences 189 

between the mean BMI and components of MetS were in line with WHO and IDF 190 

classifications, respectively.  Age and gender were not significantly different between groups 191 

(P>0.05). Overall, habitual physical activity did not differ between BMI categories of MetS; 192 

however, sedentary behaviour was greater in both of the obese groups compared to non-obese 193 

MetS- (P≤0.028) and light intensity PA was lower (P≤0.001). Total energy consumption, 194 

carbohydrate, protein and fat did not differ significantly between groups (P>0.05) (Table 1). 195 

Macronutrient percentages of all groups combined were 53±10% carbohydrate, 26±9% protein, 196 

and 21±4% fat. 197 

Flow mediated dilation 198 

FMD was higher in the MetS- individuals in both the non-obese and obese groups (Figure 1A). 199 

The non-obese MetS- individuals had a greater FMD than their MetS+ counterparts [4.1% (1.0, 200 

7.3; P=0.004)] and obese MetS+ [4.3% (1.3, 7.3; P=0.002)], with no difference compared to 201 

obese MetS-. The mean difference between the obese MetS- and obese MetS+ was 6.2% (3.1, 202 

9.2; P<0.0001), and non-obese MetS+ was 6.0% (2.8, 9.2; P<0.0001). There was no significant 203 

difference between the MetS+ groups. An increased number of MetS components was 204 

associated with a lower FMD (P=0.04; Figure 2A), differences were observed from the healthy 205 

reference group (0 components) for those with 3 (P=0.005) or ≥4 (P=0.023) components of 206 

MetS. In contrast, when using a healthy BMI as a reference group (18.5-24.9 kg/m2), none of 207 

the categories were statistically different for FMD (P=0.27; Figure 2B). Furthermore, there 208 

was no correlation between BMI and FMD (r2=0.01; P=0.512; Figure 2C). The variance of 209 

FMD explained, when controlling for age and sex, by BMI was 1.1% and by MetS was 19.7%. 210 

There were negligible and non-statistically significant differences in baseline or peak arterial 211 
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diameter, shear rate or time to peak between groups (P>0.05). All vascular data are summarised 212 

in Table 2. 213 

Cardio-respiratory fitness (CRF) 214 

V̇O2 peak was greatest in non-obese MetS-, similar in non-obese MetS+ and obese MetS-, and 215 

lowest in obese MetS+ (Figure 1B). Obese MetS+ individuals had a significantly lower CRF 216 

than non-obese MetS- by 13.9 mL·min-1·kg-1 (6.0, 21.7; P<0.0001). Differences between the 217 

MetS- groups just fell short of conventional statistical significance (P=0.056). The between-218 

group differences are also consistent when V̇O2 peak is expressed relative to lean mass. 219 

Interestingly, when FMD was adjusted for individual differences in CRF the difference in FMD 220 

between groups remained and was of similar magnitude (P<0.05).   221 

MRS determination of liver fat  222 

Group differences in liver fat were non-significant (P=0.099), however the mean values for 223 

each group suggest a trend toward greater levels of liver fat in the MetS+ groups (Figure 1C).  224 

Assessment of body composition (BIA and MRI) 225 

BIA Total body fat measured in percentage and mass was significantly lower in the non-obese 226 

groups compared to the obese groups (P<0.05; Table 3), however there were no significant 227 

differences between MetS- versus MetS+ within the BMI groups. Visceral fat rating was 228 

significantly lower in the non-obese MetS- group (P<0.05) but there were no other significant 229 

differences. No significant differences were observed in BIA derived fat free mass or muscle 230 

mass between any of the groups. 231 

MRI Total subcutaneous adipose tissue (SAT) and whole-body fat were significantly lower in 232 

the non-obese MetS- than both obese groups (P<0.05). Abdominal SAT was lower in both non-233 

obese groups (P<0.05).  Visceral adipose tissue was significantly lower in non-obese MetS- 234 

when compared to obese MetS-. Of note, there were no significant differences between MetS- 235 

versus MetS+ within the BMI groups but the data was not available for all participants.  236 
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Discussion  237 

The aim of study was to determine to what extent MetS or obesity are associated with 238 

endothelial function as a surrogate marker of cardiovascular health. The integration of 239 

measures of dietary intake and domains of physical activity, biochemical and anthropometric 240 

measures including characterisation of components of MetS (IDF consensus) and body 241 

composition using magnetic resonance imaging and spectroscopy enabled comprehensive 242 

phenotyping of individuals within age- and sex-matched groups. The major finding was that 243 

individuals with MetS (i.e. metabolically unhealthy individuals) exhibit endothelial 244 

dysfunction (lower FMD), irrespective of their obesity status. In contrast, individuals without 245 

MetS (i.e. metabolically healthy individuals), had relatively preserved endothelial function 246 

(higher FMD). Convincingly, MetS status is significantly associated with endothelial function 247 

whereas BMI is not. Alarmingly, the FMD differences between the metabolic phenotypes in 248 

this study (MetS+ vs. MetS-) was identified as ~4-6%, with indication towards an increased 249 

risk of incident CVD. Our data highlight the association of increased CVD risk in metabolically 250 

unhealthy individuals, irrespective of their obesity status, and suggest that preserved metabolic 251 

health may indeed confer a degree of cardiovascular protection and attenuate (but not 252 

necessarily eliminate) the risks associated with obesity.  253 

Our findings support the existence of distinct phenotypes within different categories of BMI, 254 

where MetS+ individuals exhibit a cluster of metabolic abnormalities (e.g. insulin resistance, 255 

hypertension and dyslipidemia). The data suggests that endothelial dysfunction is not explained 256 

by the absolute fat mass, but rather is determined (in part) by associated cardio-metabolic 257 

dysfunction/risk factors alongside known and so far unidentified factors. Individuals with MetS 258 

(non-obese and obese) have an unfavourable cardiovascular profile with a lower FMD (an early 259 

marker of atherosclerotic disease), while those without MetS (non-obese and obese) have 260 

comparable endothelial function. This phenomenon whereby other measures of cardiovascular 261 
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function differ between metabolically healthy versus metabolically unhealthy obese adults is 262 

observed not only for macrovascular complications, as here and in previous investigations (31) 263 

but also for microvascular function (32). Using identical phenotypic classification, we have 264 

previously shown similar trends for myocardial systolic and diastolic dysfunction (measured 265 

by tissue doppler imaging with transthoracic echocardiography). We observed impaired 266 

myocardial performance related to poor metabolic health but not related to levels of fat mass 267 

nor to differing amounts of ectopic fat stores (visceral and liver) (33). Mechanisms such as 268 

inflammation, increased circulating free fatty acids and pro-inflammatory cytokines have been 269 

proposed as mediators of this impact on cardiovascular risk (34).  270 

The increasing interest in the study of differing metabolic phenotypes has led many to 271 

investigate putative behavioural determinants (e.g. physical activity, diet), however findings 272 

remain equivocal (35). We found no difference between the groups for PA (even when domains 273 

of physical activity were analysed) nor in their total energy intake/macronutrient intake. We 274 

note the disparity between energy intake and expenditure, ostensibly showing the participants 275 

in a negative energy balance; however, we recognise that energy intake is largely under-276 

reported, particularly in obese adults. Dietary assessment was not a primary outcome variable 277 

and was assessed using the best resources available.  Cardiorespiratory fitness was highest in 278 

the healthy reference group (non-obese MetS-) and lowest in the obese MetS+ group perhaps 279 

as expected, although interestingly both groups of non-obese adults and obese MetS- had 280 

comparable fitness. A higher cardiorespiratory fitness is typically associated with a better 281 

metabolic profile and reduced CVD risk (36), and our data supports this. In the MetS- obese 282 

group, we observed FMD ~15%, this data is somewhat striking but not abnormal. While obesity 283 

has many comorbidities, the role of fitness is also recognised as an important prognostic marker 284 

that differs across phenotypes (37) and some researchers suggest that recommendations to 285 

reduce mortality risk should focus on increasing fitness rather than on weight loss (38). 286 
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Although we interpret this data with caution it is reasonable to suggest that intrinsic biological 287 

mechanisms may contribute to the differences we observe in these phenotypes (such as 288 

subacute inflammation, levels of oxidative stress, levels of different regulatory microRNAs 289 

and adiponectin(39)).  290 

Many authors suggest that cross-sectional observations of preserved metabolic health in obese 291 

adults likely represent a transient phenomenon and question their clinical utility and 292 

significance. Longitudinal studies are needed to address these important questions. One such 293 

study found that 50% of healthy obese progressed to an unhealthy metabolic status over a 10-294 

year follow up period (40). Interpretation of such studies is hampered by the lack of an agreed 295 

definition of ‘metabolically healthy’ (41); conclusions about the degree of protection against 296 

CV disease and T2D will clearly depend on the criteria of metabolic health. We opted for the 297 

IDF classification of MetS, as the most recent and internationally harmonised definition. 298 

Furthermore, FMD is often (as here) studied in the fasted state, yet humans spend a significant 299 

of their time in a post-prandial state.  Examination of post-prandial endothelial function 300 

between the phenotypes described in this manuscript maybe warranted and highlight more 301 

profound differences. In particular, the post-prandial state following consumption of a high‐fat 302 

meal, may be associated with oxidative stress and inflammation, which are potentially 303 

important mediators of impaired postprandial vascular function and may differ between these 304 

individuals. 305 

We acknowledge limitations of the current study, including a relatively small sample size, its 306 

cross-sectional design. Participants were recruited via local advertisement, which limits 307 

external validity as this yielded only white Europeans; defining a causal relationship with 308 

validity at a global population level is therefore not possible. However, we believe the study 309 

has significant merit. The study was powered to detect meaningful differences in the primary 310 

outcome measure (FMD). It should be acknowledged that there are outliers (Figure 2C), but 311 
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that removal of these data does not alter the outcome of statistical analyses, so the decision was 312 

made to include the data set in its entirety. It utilises objective monitoring of physical activity, 313 

a gold standard measurement of cardio-respiratory fitness combined with assessment of body 314 

composition including regional (VAT/SAT) and tissue specific (liver) fat and a novel 315 

prognostic marker for cardiovascular health, that of endothelial function. Liver fat was not our 316 

primary outcome and thus the study was not adequately powered for this outcome. Importantly, 317 

this measure was utilised to comprehensively phenotype the individuals. Based on previous 318 

work regarding fat deposition, we expected a greater propensity to deposit fat within the liver 319 

in the metabolically unhealthy (MetS+) phenotypes. This propensity was observed but did not 320 

reach statistical significance between groups. Whilst the present results demonstrate that 321 

endothelial function is impaired in those with MetS, larger studies are required with a follow-322 

up design to determine measured cardiovascular function rather than predicted CVD. This has 323 

been undertaken to a limited extent in a multi-ethnic population study but did not include the 324 

classification of sub-phenotypes (42).  325 

In conclusion, the current study provides evidence for impaired NO-mediated endothelial 326 

function in both non-obese and obese individuals who have multiple components of MetS (with 327 

comparable cardiovascular function in adults without MetS regardless of obesity status). 328 

Considering the definition of obesity as a disease (WHO), that recognises the impact of 329 

excessive fat accumulation on end-organ complications and the need to triage medical 330 

resources to those most in need, earlier detection and more focussed interventions in 331 

metabolically unhealthy individuals should be a priority rather than using a purely BMI-centric 332 

approach.  333 
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Figures 479 

 480 

Figure 1. Individual participant plots for A) flow mediated dilation (FMD), B) cardio-481 

respiratory fitness (V̇O2 peak) and, C) ‘liver fat’ intrahepatic cellular lipid (IHCL) 482 

percentage. Black circles, MetS-; grey circles, MetS+; non-obese are grouped left and obese 483 

are grouped right. Group mean ± SD data is presented as bar. *P<0.05, group difference. 484 
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 485 

Figure 2. Individual plots for all forty-four participants A) flow mediated dilation (FMD) 486 

categorised for number of metabolic syndrome (MetS) components, B) FMD categorised for 487 

(BMI) classifications and C) showing individual points for flow mediated dilation (FMD) and 488 

body mass index (BMI).489 
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Table 1. Descriptive data, mean ± SD of clinical values, physical activity and dietary data of each group categorised for obesity and 
subsequently MetS. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

MetS, metabolic syndrome; M, male; F, female; BMI, body mass index; BP, blood pressure; HDL, high-density lipoprotein; PA, physical 
activity; METS, metabolic equivalents; MVPA, moderate-vigorous physical activity. 
*sig different to both obese groups 
 
 

 Non-obese Obese 
 MetS- (n=10) MetS+ (n=10) MetS- (n=12) MetS+ (n=12) 

Gender M n=9; F n=1 M n=8; F n=2 M n=7; F n=5  M n=6; F n=6 
Age (years) 43 ± 14 48 ± 9 43 ± 14 36 ± 11 

BMI (kg/m2) 24.6 ± 3.1 26.9 ± 2.0 33.7 ± 4.7  33.9 ± 2.6  
Components of metabolic syndrome 

Waist circumference (cm) 89 ± 10 97 ± 6 105 ± 15 111 ± 9 
Systolic BP (mmHg) 125 ± 13 143 ± 11 126 ± 14 149 ± 18 

Diastolic BP (mmHg) 79 ± 13 95 ± 15 77 ± 5 92 ± 12 
Fasting glucose (mmol/l) 5.0 ± 0.4 5.4 ± 0.3  4.9 ± 0.4  5.5 ± 1.1 

Triglyceride (mmol/l) 1.1 ± 0.8 1.4 ± 0.5 1.2 ± 0.8 1.8 ± 1.0 
HDL-cholesterol (mmol/l)  1.7 ± 0.4  1.7 ± 0.7 1.6 ± 0.5 1.3 ± 0.3 

Physical activity  
Energy expenditure (kJ/day) 12143 ± 3641 12226 ± 1743 12079 ± 3951 13281 ± 3104 

PA duration [>1.5 METS] (min/day) 482 ± 117 340 ± 137 304 ± 160 311 ± 179 
Sedentary [<1.5 METS] (min/day)  909 ± 113* 1027 ± 91 1074 ± 166 1132 ± 125 

Light [1.3 - 3 METS] (min/day) 321 ± 73* 253 ± 74 186 ± 96 176 ± 56 
MVPA [>3 METS] (min/day) 165 ± 93 117 ± 52 121 ± 86 109 ± 104 

Dietary analysis  
Energy intake (kJ/day) 9532 ± 2008 8272 ± 1441 9629 ± 2201 8019 ± 1217 

Carbohydrate (g/day) 206 ± 79 209 ± 59 214 ± 76 236 ± 39 
Protein (g/day) 95 ± 16 91 ± 13 130 ± 54 85 ± 14 

Fat (g/day) 92 ± 24 73 ± 9 95 ± 26 65 ± 23 



21 
 

Table 2. Differences in the brachial artery vascular function between groups categorised for obesity and subsequently MetS, mean ± SD. 

 
 

 

 

 

 

 

 

 

 

 

 

 Non-obese Obese 
 

 MetS- (n=10) MetS+ (n=10) MetS- (n=12) MetS+ (n=12) P 
(ANOVA) 

 M n=9; F n=1 M n=8; F n=2 M n=7; F n=5  M n=6; F n=6  
Flow-Mediated Dilation (%) 8.6 ± 1.2 4.7 ± 2.6 10.8 ± 3.6 4.6 ± 1.9 <0.001 

Baseline Diameter (mm) 0.42 ± 0.06 0.44 ± 0.06 0.40 ± 0.1 0.41 ± 0.09 0.75 
Peak Diameter (mm) 0.46 ± 0.06 0.45 ± 0.06 0.44 ± 0.1 0.43 ± 0.09 0.91 

Shear RateAUC (s-1 x 103) 15395 ± 8421 11669 ± 7808 13048 ± 23067 17136 ± 11583 0.36 
Time to Peak (s) 44.4 ± 19.6 32.7 ± 19.2 71.9 ± 59.1 46.9 ± 21.4 0.32 
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Table 3. Body composition data, mean ± SD derived from both bioelectrical impedance and MRI quantification presented for each group 
categorised for obesity and subsequently MetS. 

 
 
 
 
 
 
 
 
 

SAT, subcutaneous adipose tissue  
*sig lower than both obese groups 
**sig lower than obese MetS+ 
***sig lower than obese MetS- 
 
 

 Non-obese Obese 
 MetS- (n=10) MetS+ (n=10) MetS- (n=12) MetS+ (n=12) 
Bioelectrical impedance quantification of:     

Fat (%) 21.5 ± 5.6* 27.5 ± 5.1* 39.4 ± 7.0 39.4 ± 7.8 
Fat mass (kg)  16.4 ± 5.5* 22.3 ± 3.4* 38.1 ±10.9 39.1 ± 8.2 

Fat free mass (kg) 58.5 ± 8.0 59.2 ± 8.0 58.4 ± 11.5 60.9 ± 12.9 
Muscle mass (kg) 55.5 ± 7.7 56.2 ± 7.6  55.4 ± 7.7 57.9 ± 12.2 
Visceral fat rating 8 ± 3* 10 ± 3 13 ± 5 14 ± 5 

MRI quantification of: MetS- (n=10) MetS+ (n=8) MetS- (n=7) MetS+ (n=7) 
Total SAT (L) 15.3 ± 3.8* 17.9 ± 4.4 29.9 ± 11.9 28.6 ± 13.1 

Abdominal SAT (L) 3.9 ± 1.8** 5.6 ± 1.1** 9.7 ± 4.2  12.9 ± 7.7  
Visceral adipose tissue (L)  3.0 ± 1.9*** 4.6 ± 1.7 6.0 ± 2.3  5.5 ± 2.1  

Internal fat (L) 5.7 ± 2.6 8.1 ± 3.4 9.9 ± 3.6 9.3 ± 2.9  
Whole-body fat (L) 21.0 ± 5.3* 26.0 ± 2.6* 39.7 ± 12.7 40.7 ± 10.4 
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